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Abstract—Assessing and encoding human driving expertise
while handling challenging events, primarily during drifts, can
unveil new insights regarding the professional response to ex-
treme driving which can be integrated into Autonomous Vehicles
(AVs) safety procedures. Considering the complex and dynamic
data related to both human behaviour and car devices, this
research area urges the inclusion of Artificial Intelligence (AI)
strategies for the extraction of interdependencies and patterns
that encode human driving expertise. To do so, acquiring data
that comprises the pilot and vehicle performances is of utmost
importance. The present work proposes a specially designed data
acquisition system to collect data regarding the vehicle dynamic
movement and the associated human behaviour while driving
in challenging environments. Distinct sensing devices are placed
across the vehicle to retrieve the vehicle position, acceleration,
angular rotation, steering orientation, among others. Data was
collected from professional drivers during official racing events,
and initial processing results show spatial and temporal coherence
with the racing performances. The preliminary analysis of the
data also reveals potentially extreme events during the race.

Index Terms—Autonomous Vehicles, Driving Safety, Expert
Driving, Behavioural Engineering, Sensing System

I. INTRODUCTION

Devising Autonomous Vehicles (AVs) has attracted enor-
mous attention and investment of major academic and industry
players worldwide. Nevertheless, the public opinion regarding
AVs is still controversial, and the feeling of distrust regarding
safety and reliability prevents acceptance and holds back AV
deployment.

For a regular driver, an unexpected event associated with
loss of car control will likely result in a road accident.
Thus, providing AV with expert human behaviour during
these extreme situations would result in optimised performance
and increased safety. A multidisciplinary and integrated view
of the problem, exploring how car technologies, behavioural
engineering and Artificial Intelligence (AI) may be articulated
to improve performance, will represent a step forward towards
the deployment of safer AV.

Drifting is one of the most challenging driving scenarios,
at which professional drivers aim to excel. Also known as
aggressive driving [1] or high sideslip cornering [2], [3],
drifting is a non-linear car driving dynamics, highly complex
to model due to the large uncertainty in quantifying the

associated variables, such as tire behaviour [4]. Figure 1 illus-
trates a drifting manoeuvre, characterised by a high sideslip
angle (β), i.e. the angle formed between the velocity vector
and the longitudinal axis of the vehicle. Despite existing
studies focusing on capturing the vehicle dynamics under such
conditions, the motivation relied on the ability to trigger or
maintain drifting instead of preventing or compensating it [2],
[5]–[8].

Fig. 1. Drift event with high sideslip angle.

The main goal of the research is to identify key patterns
and map expert handing of drifting driving events. To do
so, collecting data in real life environments, from expert
driving, can provide new insights into the identification of
loss of control, the circumstances that lead to such events
and how to best respond to overcome them. This work pro-
poses the data acquisition system to achieve these objectives.
The sensing devices, selected to jointly measure car and
pilot, are thoroughly described regarding their configuration,
compatibility, communication and operation. The prototype
was tested in official racing events, exploiting the real-world
environment and criticality of the driving experiment. The
spatial and temporal coherence with the driver’s performance
demonstrates the system suitability to capture both driver and
vehicle behaviour.

Section II discusses studies on related areas of driving and
vehicle dynamics. Section III describes the methodology for
the definition of the data acquisition protocol, and Section IV
delves into the specification of the prototype proposed, includ-
ing its key components and configuration. Analysis conducted
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on data acquired in real-world-experiments is presented in
Section V. Finally, in Section VI are discussed the conclusion
and envisioned future work.

II. RELATED WORK

Vehicle dynamics allows modelling the dynamics of a
vehicle in motion, based on laws of physics and algebraic
analysis that, according to given input parameters, determine
the resulting motion. The dynamic behaviour of a car is the
result of the combination of the moving forces associated with
the vehicle tyres, gravity and aerodynamics during driving [7],
[9], [10].

Regarding human performance, most studies on driving
focus on human’s fatigue and drowsiness [11]–[14]. However,
the study of the human response under extreme driving con-
ditions in real environments is a more challenging and less
covered topic. Prior work carried out has identified patterns
of brain-body behaviour in a professional race driver [15].
It was found that upon unexpected events such as loss of
control (while drifting and managing tight curves) the brain
signals of the professional driver displayed patterns associated
with expertise, which underlines an expert handling of those
events. Other studies such as [16]–[18] and [19] focused on
the expert driver behaviour, which can be segmented into
different styles and levels according to [20]. In [21], [22]
are discussed strategies to imitate the human driving skill
for an AV. Nevertheless, many open issues of human driving
behaviour remain unexplored, and many factors influence and
determine this behaviour [23], being personal traits, experi-
ence, and skill at the core of the driving strategy [24], [25].
Therefore, innovative approaches to deploying findings in in-
body and in-vehicle technologies for safe driving are required.

Regarding the literature review addressing driving chal-
lenges, most studies focus on intersections [16]–[18] or blind
corners [19]. Despite demanding, these are common tasks
while driving, distinct from the drifting critical event, where
the driver loses control of the car. Capturing drifting events
and the expert human response to them are the main targets
of this work.

III. METHODOLOGY

The present section discusses the measurement variables to
consider and the environment for data acquisition1.

Figure 2 illustrates the architecture of the proposed exper-
imental setup, highlighting the environment where data will
be collected, the expected variables to retrieve and how these
will be handled.

1Data collection both in Portuguese and European Championships were
enabled through partnerships with the Portuguese Minho Car Club (CAM -
https://camminho.com/), the Portuguese Automobile and Karting Federation
(FPAK https://www.fpak.pt/) and internatinal Fédération Internationale de
l’Automobile (FIA https://www.fia.com/), as well as specific racing teams.

A. Dataset Design

The envisioned dataset to detect extreme driving events and
extract the associated expert human response comprises two
main sets of variables: static variables, and active variables.
These variables relate to each data acquisition experiment,
as shown in Figure 2. The former are associated with all
relevant variables that interfere with the driving scenario, but
that do not change during the experiment, such as the type
of vehicle, its horsepower, its weight (in the front and rear
axis), the weather, the track conditions and map, the driver
skill, among others. These will act as weighing parameters in
the final model.

As for the active variables, these are the time series asso-
ciated with the acquisition of the vehicle dynamics and the
human response, during a driving experiment. More precisely,
these variables are associated with the motion of the car
(direction, speed, and general driving behaviour) and the
simultaneous human response (steering response, accelera-
tion/braking response) to the car’s motion.

The active variable collection resorts to the prototype further
discussed in Section IV. The definition of which variable to
collect was also based on drifting control studies. Whereas [2],
[8] resort to built setups, [5]–[7] resort to similar sensing
devices as the ones selected to retrieve the driving dynamics
parameters.

The sensing devices capture the active variables in relation
to a set of axis and rotations, which are illustrated in Figure 3.

B. Requirements

A set of key requirements for the data acquisition prototype
have been defined in order to retrieve data capable of fulfilling
the technological challenges and goals previously mentioned.
These have also been discussed with the racing teams for their
approval.

The key requirements for the prototype are as follows:

• not to interfere with the drivers’ performance;
• agnostic from the vehicle specifications, being transfer-

able between vehicles;
• fast and easy assemble and dissemble in the vehicle;
• low cost and low power consumption system;
• acquire data at a sampling rate adequate for capturing

extreme events;
• capture the vehicle position and movement, including

acceleration and rotation;
• capture the human steering, throttle and braking inputs;
• guarantee data synchronisation amongst all variables col-

lected;
• collect and store experimental data for an uninterrupted

period of 1h;
• store data collected for offline data analysis.

Information regarding the pilot, vehicle and driving experi-
ment setup (static variables) need to be retrieved to associate
with the active variables.



Fig. 2. Architecture of the experimental setup and parameters involved.

Fig. 3. Vehicle and its rotation axis.

IV. DATA ACQUISITION PROTOTYPE

Considering the active variables to retrieve, regarding the
vehicle movement and the human input actions, and taking
into account the elicited requirements, the proposed prototype
comprises a single controller that guarantees synchronous data
collection from eight sensors, and storage in an SD card.
Figure 4 illustrate the active variables to capture, the sensing
equipment used and the information that can be retrieved from
its analysis.

A. Equipment

The prototype includes several sensing devices, which pur-
pose, selected component and configurations are detailed in
the present section.

1) Controller: The controller contains the developed soft-
ware for the synchronous activation and data collection from
all sensors, and respective storage in the SD card. The con-
troller manages three Inertial Measurement Units (IMUs), two
magnetometers, two accelerometers, one Global Positioning
System (GPS), one clock and one SD card shield, guaranteeing
a synchronous data collection at 150 Hz.

The prototype controller is an ESP32 DEVKIT-V12. The
ESP32 is a powerful low power consumption controller, that
contains a Xtensa Dual-Core 32-bit processor, Flash (4MB),

2https://www.adrobotica.com/wp-content/uploads/2019/07/Datasheet
ESP8266 esp32 en.pdf

ROM (448 KB) and RAM (520 KB) memory surpassing other
controllers such as Arduino. The selected controller comprises
36 General-purpose input/output (GPIO) pins. ESP32 can
communicate with its peripherals using Inter Integrated Circuit
(I2C) and Serial Peripheral Interface (SPI) communication
protocols. The controller contains two I2C bus interfaces,
being capable of managing through those up to 128 slaves.
In each I2C bus all sensors must have a different I2C address.

2) IMU: The IMUs are responsible for capturing the mo-
tion of a given object, therefore being one core piece in the
proposed system. The prototype includes three IMUs, placed
at the front and rear of the vehicle, and at the steering wheel.
These sensors will enable the extraction of the acceleration and
rotation of the vehicle (and the comparison between the front
and the rear) during challenging events, as well as extract the
behaviour of the steering input actions triggered by the driver
(the angular rotation of the steering wheel and how fast the
change was induced).

The selected IMUs are the MPU60503. These have 6
Degrees-of-Freedom (DoF), associated with a 3 axis ac-
celerometer and 3 axes gyroscope. The acceleremoter capture
the acceleration perceived by the sensor in the X, Y and Z axis,
whereas the gyroscope retrieves the angular velocity in the
same 3 axis. Each has different ranges available, which define
their sensitivity. The accelerometer can be set to measure ± 2,
4, 8, 16 g, whereas the gyroscope can measure ± 250, 500,
1000, 2000 °/s. These are configurable through the allocated
registers (see datasheet). A smaller range is associated with
more sensitive measurements. The range set is associated with
the higher values the system can retrieve, for which adequately
selecting the range to the problem is paramount for meaningful
detailed data. Respecting the project needs, the acceleration
and angular rotation experienced can be captured within a 2g
acceleration and 250 º/s configuration.

The offset values are retrieved in the beginning of the data

3https://invensense.tdk.com/wp-content/uploads/2015/02/
MPU-6000-Register-Map1.pdf



Fig. 4. Data acquisition systematisation, with active variables measured, equipment to collect them, and retrieved information.

collection for posterior calibration. The vertical acceleration
captures the gravity acceleration value of 1g.

Since gyroscope tend to accumulate drift error over time,
and accelerometer data is affected by external forces, two
3 axis HMC5883L magnetometers4 are coupled with the
MPU6050 placed in the front and rear of the vehicle, creating
a 9 DoF IMU. The inclusion of the magnetometers extends
the possibility for sensor fusion (either resorting to a compli-
mentary filter [26] or Kalman filter [27], [28]) and therefore
more accurately study the vehicle movement. Furthermore,
magnetometer data can be used to extract the heading (yaw)
of the vehicle, which is pivotal when studying drifting.

Both the MPU6050 and HMC5883L communicate via I2C
protocol. The MPU6050 I2C address is 0x68, but it can be
set to 0x69 by activating one pin of the sensor. Since, as
discussed, the controller can only have up to two sensors with
the same I2C address (one per I2C bus), the possibility to
shift the MPU6050 address has enable the usage of three of
these sensors (the one in the front and rear are set to 0x69
and the one in the steering wheel to 0x68). The HMC5883L
I2C address is 0x1E, being each associated to one of the
controllers’ I2C bus along with the coupled MPU6050.

3) Throttle Accelerometers: Similarly to the built-in ac-
celerometers of the MPU6050, two individual 3axis ac-

4https://cdn-shop.adafruit.com/datasheets/HMC5883L 3-Axis Digital
Compass IC.pdf

celerometers are used to capture the driver actions in the gas
and brake pedals. The target measurement is the percentage of
input in each of these pedals. Without suffering error drift over
time, the accelerometers not only provide the readiness with
which the driver triggers an action, but, the retrieved accel-
eration measurements can be converted into angular position
of the pedal. The accelerometers can be placed behind the
pedals, considering that these never reach vertical inclination
and therefore no Gimbal Lock [27] effect will arise. In this
sense, the accelerometers represent a great solution to measure
the expert pilot input in terms of percentage of throttle and
brake of the car.

The selected accelerometers are the ADXL3455. These can
also be configured to a ± 2, 4, 8, 16 g, but in the scope of their
usage, a ± 2g provides accurate measurements. The selection
of acceleremoters to capture pedal input was also based on the
need to include sensing devices with alternative I2C address.
The ADXL345 also communicate with the controller via I2C
protocol, with the address 0x53 (each accelerometer in a
separate ESP32 I2C bus interface).

4) GPS: The GPS provides information of the vehicle’s
positioning during the experiment. As data will be collected
during official racing events, the information of the vehicle
position on the track not only can be matched against the

5https://www.analog.com/media/en/technical-documentation/data-sheets/
ADXL345.pdf



official race track, as it will help identify if scenarios prone to
challenging events during the race and evaluate their impact
in the remaining variables collected.

The GPS neo-7M6 enables data collection of the latitude,
longitude, altitude and speed, to a frequency up to 10Hz.
Since the collection of this data is associated with receiving
satellite signal rather than a specific ESP32 command, and
due to the high volume on continuous data collected, the GPS
measurements are currently taken at a 2Hz. This sampling
frequency surpasses usual GPS data collection of 1Hz.

5) Clock: The prototype includes a clock responsible for
each measurement timestamp. For efficiency purposes, the
timestamp is stored once per second, along with the measure-
ments taken within this time span (150 samples). The clock’s
timestamp when the prototype is activated is used to name
the file in the SD card, enabling the collection of consecutive
experiments without overwriting information.

A DS32317 Real-Time Clock (RTC) was selected based
on its accuracy and long lasting inner battery that does not
accumulate error over time. This sensor also communicates
with the ESP32 via I2C, with the address of 0x68. Therefore,
two MPU6050 are set to 0x69 and only one is in the address
0x68.

6) Data Storage: The data collected requires offline pro-
cessing and analysis. In this sense, data storage of all exper-
iments is paramount. Storing information into a device as a
laptop or tablet is unsuitable in the experimental environment.
Therefore, the data measurements retrieved from the three
MPU6050, two HMC5883, two ADXL345, GPS neo7M and
DS3231 during a given experiment are stored in a single text
file in a SD card.

The VMA304 SD Card Logging Shield8 enables the storage
of the data related to all sensing devices in a SD card of vari-
able memory size. Currently, a 32GB SD card is being used.
The SD card shield communicates with the ESP controller
via SPI protocol. The software within ESP32 includes an
initial function that provides visual feedback that the writing
operation of the data in the card is properly functioning.

7) Power Supply: Complying with the need of a self-
sufficient prototype, the power supply is a fundamental piece
of the puzzle. The power supply must, in one hand, comply
with the power limitations of the ESP32 controller (receive
maximum of 5V as steady as possible) and, in the other hand
with the power requirements of each sensing device included
(minimum of 2.5V for operation). A common 10000mAh
powerbank can comply with these limitations and guarantee
power stability for more than 1 hour.

To conduct the energy to each sensor of the proposed proto-
type, six four meter long F/UTP cables enable the placement of
the sensors in the desired positions in the vehicle. Connectors
with breaking mechanism enable the secure attachment and
detachment of the cables from the controller board.

6https://content.u-blox.com/sites/default/files/products/documents/NEO-7
DataSheet %28UBX-13003830%29.pdf

7https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
8https://www.velleman.eu/downloads/29/vma304 a4v01.pdf

B. Software

The ESP32 contains the software to control all sensing
devices in the prototype, activated when the power supply is
on. The software was developed resorting to ARDUINO IDE.
The software enables data collection in a synchronised manner
at a 150 HZ sampling frequency (the GPS data is collected
when signal is available at maximum 2Hz).

The 150Hz sampling frequency enables meaningful collec-
tion of a drifting scenario, since it corresponds to a sample
every 6.67 milliseconds. A speed of 120 Km/h (maximum
street limit) implies that a sample is taken at every 22.2 cen-
timetres, and at 200Km/h (typical maximum velocity reached
in hill climb races) a sample is collected every 37 cm, which
enables the full capture of a drifting motion.

Figure 5 represents the flowchart for data acquisition. The
Setup corresponds to the activation of each sensor within the
prototype. The MPU6050 and ADXL345 accelerometers are
configured to 2g and the gyroscopes to 250º/s during Configure
Range stage. Then, the file where data will be stored is created.
For optimisation purposes, during the LOOP stage content is
appended in the file every 1 second. This stage runs until the
prototype is turned off.

Fig. 5. Flowchart of the prototype controlling software.

V. DATA RETRIEVAL AND ANALYSIS

Following the established partnerships with racing organisa-
tions and racing teams, the prototype has already been tested
during the race Rampa da Penha of the Portugal JC Group
Hill Climb 22 Championship (organised by FPAK), and on the
Rampa da Falperra of the European Hill Climb Championship
organised by FIA.



Fig. 6. Data analysis: (A) velocity; (B) lateral velocity; (C) sideslip angle.

Fig. 7. Spatial display of sideslip angle, highlighting its intensity and turning
direction.

The prototype collected and stored data from all sensors,
which then underwent the sensitivity, calibration, filtering, and
processing techniques associated with the type of measure-
ments taken. To assess the robustness of the proposed system,
initial results focus on the spatial and temporal consistency
with the racing performance.

Considering that drifting is characterised by a high sideslip
angle, which relates longitudinal and lateral velocity, computed
by β = arctan(vyvx), accelerometers data from the front and
rear of the vehicle was integrated to velocity. GPS data, which
retrieves latitude, longitude and speed, is used for race track

matching and comparison purposes. Figure 6 (A) illustrates the
velocity measured in the front of the vehicle (magnitude using
longitudinal and lateral components), as well as the velocity
retrieved from the GPS, which presents a 93% correlation.
Figure 6 (B) focuses on the lateral velocity, which strongly
affects the likelihood of a drifting event. As the vehicle is
always moving forward, longitudinal velocity remains positive,
and lateral velocity determines the signal of the sideslip angle,
which is presented in Figure 6 (C). The local maximum
and minimum of the data are annotated in green and red
dots, respectively. The black dots represent the zeros of data,
which are the same for the lateral velocity and sideslip angle.
When lateral velocity is positive, so it is the sideslip angle.
Considering the axis notation presented in Figure 3 (which is
aligned with the axis at the front of the car), a positive lateral
velocity indicates turning to the left (in relation to the starting
point), and a negative lateral velocity a turn to the right.

Figure 7 illustrates this relation in the spatial coordinates
of the track. The spatial positioning was retrieved from the
GPS’s latitude and longitude data, which was interpolated to
150 Hz. In green are represented positive sideslip angles and
in red negative sideslip angles. As visible, these match left
and right turns, respectively, of the track itself. Furthermore,
the intensity of the β is illustrated by the size of the plot for
each timestamp. It is visible that not only does the calculated
turning side match the track turns, but that the tightest part of



each turn is associated with higher sideslip angles, and that
the tighter the curve, the highest values of β are reached.

The spatio-temporal coherence and consistency of the re-
sults obtained, in relation to the driving experiments con-
ducted, strongly supports the ability of the proposed system
to retrieve meaningful data from driving scenarios, which can
then be used to identify drifting events and map the associated
professional driving response.

VI. CONCLUSIONS AND FUTURE WORK

Identifying critical driving scenarios, extracting the patterns
prior to these events and the expert strategies to regain control
of the vehicle can unlock novel driving assistance systems with
increased safety. To this end, the proposed data acquisition
system aims to be a step forward in the deployment of such
systems.

The sensing system acquires data from both vehicle dy-
namics and expert human driving performance, which will be
used to determine the patterns prior and posterior to drifting
events. Key sensors, activated and synchronised by a single
controller, focus on the extraction of these data, stored for
posterior analysis.

The prototype has been tested in real-world-environment
racing events and the results associated with the analysis of
the spatial temporal coherence with the racing experiments
support the ability to use the proposed system to infer critical
events while driving.

The preliminary data analysis has unveiled the presence
of extreme driving events, and future work will focus on
the application of machine learning algorithms to extract the
desired interdependencies and patterns between drifting events
and the corresponding expert handling.
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